FANDOM


Ternary elements of oceans are Calcium and Potassium.

Occurrence of CalciumEdit

Calcium is not naturally found in its elemental state. Calcium occurs most commonly in sedimentary rocks in the minerals calcite, dolomite and gypsum. It also occurs in igneous and metamorphic rocks chiefly in the silicate minerals: plagioclase, amphiboles, pyroxenes and garnets.

IsotopesEdit

Main article: Isotopes of calcium

Calcium has four stable isotopes (40Ca and 42Ca through 44Ca), plus two more isotopes (46Ca and 48Ca) that have such long half-lives that for all practical purposes they can be considered stable. The 20% range in relative mass among naturally-occurring calcium isotopes is greater than for any element except hydrogen and helium. Calcium also has a cosmogenic isotope, radioactive 41Ca, which has a half-life of 103,000 years. Unlike cosmogenic isotopes that are produced in the atmosphere, 41Ca is produced by neutron activation of 40Ca. Most of its production is in the upper metre or so of the soil column, where the cosmogenic neutron flux is still sufficiently strong. 41Ca has received much attention in stellar studies because it decays to 41K, a critical indicator of solar-system anomalies.

97% of naturally occurring calcium is in the form of 40Ca. 40Ca is one of the daughter products of 40K decay, along with 40Ar. While K-Ar dating has been used extensively in the geological sciences, the prevalence of 40Ca in nature has impeded its use in dating. Techniques using mass spectrometry and a double spike isotope dilution have been used for K-Ca age dating.

The most abundant isotope, 40Ca, has a nucleus of 20 protons and 20 neutrons. This is the heaviest stable isotope of any element which has equal numbers of protons and neutrons. In supernova explosions, calcium is formed from the reaction of carbon with various numbers of alpha particles (helium nuclei), until the most common calcium isotope (containing 10 helium nuclei) has been synthesized.[citation needed]

Occurrence of PotassiumEdit

PotassiumFeldsparUSGOV

Potassium in feldspar

Elemental potassium does not occur in nature because it reacts violently with water. As various compounds, potassium makes up about 1.5% of the weight of the Earth's crust and is the seventh most abundant element. As it is very electropositive and highly reactive potassium metal is difficult to obtain from its minerals.[1]

IsotopesEdit

Main article: isotopes of potassium

There are 24 known isotopes of potassium. Three isotopes occur naturally: 39K (93.3%), 40K (0.0117%) and 41K (6.7%). Naturally occurring 40K decays to stable 40Ar (11.2% of decays) by electron capture or positron emission, or decays to stable 40Ca (88.8% of decays) by beta decay; 40K has a half-life of 1.250×109 years. The decay of 40K to 40Ar enables a commonly used method for dating rocks. The conventional K-Ar dating method depends on the assumption that the rocks contained no argon at the time of formation and that all the subsequent radiogenic argon (i.e., 40Ar) was quantitatively retained. Minerals are dated by measurement of the concentration of potassium and the amount of radiogenic 40Ar that has accumulated. The minerals that are best suited for dating include biotite, muscovite, plutonic/high grade metamorphic hornblende, and volcanic feldspar; whole rock samples from volcanic flows and shallow instrusives can also be dated if they are unaltered.

Outside of dating, potassium isotopes have been used extensively as tracers in studies of weathering. They have also been used for nutrient cycling studies because potassium is a macronutrient required for life.

40K occurs in natural potassium (and thus in some commercial salt substitutes) in sufficient quantity that large bags of those substitutes can be used as a radioactive source for classroom demonstrations. In healthy animals and people, 40K represents the largest source of radioactivity, greater even than 14C. In a human body of 70 kg mass, about 4,400 nuclei of 40K decay per second.[2] The activity of natural potassium is 31 Bq/g.

ReferencesEdit

  1. Mark Winter. "Potassium: Key Information". Webelements.
  2. "background radiation – potassium-40 – γ radiation".

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.