Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic ions. It is commonly used for thin-film deposition, etching and analytical techniques (see below).

Physics of sputtering Edit

Physical sputtering is driven by momentum exchange between the ions and atoms in the material, due to collisions[1][2][3]. The incident ions set off collision cascades in the target. When such cascades recoil and reach the target surface with an energy above the surface binding energy, an atom can be ejected. If the target is thin on an atomic scale the collision cascade can reach the back side of the target and atoms can escape the surface binding energy `in transmission'. The average number of atoms ejected from the target per incident ion is called the sputter yield and depends on the ion incident angle, the energy of the ion, the masses of the ion and target atoms, and the surface binding energy of atoms in the target. For a crystalline target the orientation of the crystal axes with respect to the target surface is relevant.

The primary particles for the sputtering process can be supplied in a number of ways, for example by a plasma, an ion source, an accelerator or by a radioactive material emitting alpha particles.

A model for describing sputtering in the cascade regime for amorphous flat targets is Thompson's analytical model [4]. An algorithm that simulates sputtering based on a quantum mechanical treatment including electrons stripping at high energy is implemented in the program TRIM ( described in "Stopping and Range of Ions in Solids."[5]

A different mechanism of physical sputtering is heat spike sputtering. This may occur when the solid is dense enough, and the incoming ion heavy enough, that the collisions occur very close to each other. Then the binary collision approximation is no longer valid, but rather the collisional process should be understood as a many-body process. The dense collisions induce a heat spike (= thermal spike), which essentially melts the crystal locally. If the molten zone is close enough to a surface, large amounts of atoms may sputter due to flow of liquid to the surface and/or microexplosions[6]. Heat spike sputtering is most important for heavy ions (say Xe or Au or cluster ions) with energies in the keV–MeV range bombarding dense but soft metals with a low melting point (Ag, Au, Pb, ...). The heat spike sputtering often increases nonlinearly with energy, and can for small cluster ions lead to dramatic sputtering yields per cluster of the order of 10000 [7]. For animations of such a process see [1].

Physical sputtering has a well-defined minimum energy threshold which is equal to or larger than the ion energy at which the maximum energy transfer of the ion to a sample atom equals the binding energy of a surface atom. This threshold typically is somewhere in the range 10–100 eV.

Preferential sputtering can occur at the start when a multicomponent solid target is bombarded and there is no solid state diffusion. If the energy transfer is more efficient to one of the target components, and/or it is less strongly bound to the solid, it will sputter more efficiently than the other. If in an AB alloy the component A is sputtered preferentially, the surface of the solid will, during prolonged bombardment, become enriched in the B component thereby increasing the probability that B is sputtered such that the composition of the sputtered material will be AB.

Electronic sputtering Edit

The term electronic sputtering can mean either sputtering induced by energetic electrons (for example in a transmission electron microscope), or sputtering due to very high-energy or highly charged heavy ions which lose energy to the solid mostly by electronic stopping power, where the electronic excitations cause sputtering[8]. Electronic sputtering produces high sputtering yields from insulators, as the electronic excitations that cause sputtering are not immediately quenched, as they would be in a conductor. One example of this is Jupiter's ice-covered moon Europa, where a MeV sulfur ion from Jupiter's magnetosphere can eject up to 10,000 H2O molecules. [9]

Potential sputtering Edit

In the case of multiply charged projectile ions a particular form of electronic sputtering can take place which has been termed potential sputtering[10][11]. In these cases the potential energy stored in multiply charged ions (i.e., the energy necessary to produce an ion of this charge state from its neutral atom) is liberated when the ions recombine during impact on a solid surface (formation of hollow atoms). This sputtering process is characterized by a strong dependence of the observed sputtering yields on the charge state of the impinging ion and can already take place at ion impact energies well below the physical sputtering threshold . Potential sputtering has only been observed for certain target species[12] and requires a minimum potential energy[13]

Etching and chemical sputtering Edit

Removing atoms by sputtering with an inert gas is called `ion milling' or 'ion etching'.

Sputtering can also play a role in reactive ion etching (RIE), a plasma process carried out with chemically active ions and radicals, for which the sputtering yield may be enhanced significantly compared to pure physical sputtering. Reactive ions are frequently used in SIMS equipment to enhance the sputter rates. The mechanisms causing the sputtering enhancement are not always well understood, but for instance the case of fluorine etching of Si has been modelled well theoretically.[14]

Sputtering which is observed to occur below the threshold energy of physical sputtering, is also often called chemical sputtering [1][3]. The mechanisms behind such sputtering are not always well understood, and may be hard to distinguish from chemical etching. At elevated temperature chemical sputtering of carbon can be understood to be due to the incoming ions weakening bonds in the sample, which then desorb by thermal activation [15]. The hydrogen-induced sputtering of carbon-based materials observed at low temperatures has been explained by H ions entering between C-C bonds and thus breaking them, a mechanism dubbed swift chemical sputtering[16]..

Applications and phenomenaEdit

Film deposition Edit

Main article: Sputter deposition

Sputter deposition is a method of depositing thin films by sputtering, i.e. eroding, material from a "target," e.g., SiO2, which then deposits onto a "substrate," e.g., a silicon wafer. Resputtering, in contrast, involves re-emission of the deposited material, e.g., SiO2, during the deposition also by ion bombardment.

Sputtered atoms ejected into the gas phase are not in their thermodynamic equilibrium state, and tend to deposit on all surfaces in the vacuum chamber. A substrate (such as a wafer) placed in the chamber will be coated with a thin film. Sputtering usually uses an argon plasma.

For analysis Edit

Another application of sputtering is to etch away the target material. One such example occurs in Secondary Ion Mass Spectroscopy (SIMS), where the target sample is sputtered at a constant rate. As the target is sputtered, the concentration and identity of sputtered atoms are measured using Mass Spectroscopy. In this way the composition of the target material can be determined and even extremely low concentrations (20 µg/kg) of impurities detected. Furthermore, because the sputtering continually etches deeper into the sample, concentration profiles as a function of depth can be measured.

In space Edit

Sputtering is one of the forms of space weathering, a process that changes the physical and chemical properties of airless bodies, such as asteroids and our moon. It is also one of the possible ways that Mars has lost most of its atmosphere and that Mercury continually replenishes its tenuous surface-bounded exosphere.

External links Edit

References Edit



  1. 1.0 1.1 R. Behrisch (ed.) (1981). Sputtering by Particle bombardment:, Springer, Berlin. ISBN 978-3540105213. 
  2. P. Sigmund, Nucl. Instr. Meth. Phys. Res. B (1987). "Mechanisms and theory of physical sputtering by particle impact". Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms 27: 1. doi:10.1016/0168-583X(87)90004-8. 
  3. 3.0 3.1 R. Behrisch and W. Eckstein (eds.) (2007). Sputtering by Particle bombardment: Experiments and Computer Calculations from Threshold to Mev Energies, Springer, Berlin. 
  4. M.W. Thompson, Philos. Mag. 18, 1962
  5. J. F. Ziegler, J. P, Biersack, U. Littmark (1984). The Stopping and Range of Ions in Solids," vol. 1 of series Stopping and Ranges of Ions in Matter, Pergamon Press, New York. ISBN 978-0080216034. 
  6. Mai Ghaly and R. S. Averback (1994). "Effect of viscous flow on ion damage near solid surfaces". Physical Review Letters 72: 364. doi:10.1103/PhysRevLett.72.364. PMID 10056412, 
  7. S. Bouneau, A. Brunelle, S. Della-Negra, J. Depauw, D. Jacquet, Y. L. Beyec, M. Pautrat, M. Fallavier, J. C. Poizat, and H. H. Andersen, Very large gold and silver sputtering yields induced by keV to MeV energy Aun clusters (n=1-13), Phys. Rev. B 65, 144106 (2002)
  8. T. Schenkel et al (1997). "Electronic Sputtering of Thin Conductors by Neutralization of Slow Highly Charged Ions". Physical Review Letters 78: 2481. doi:10.1103/PhysRevLett.78.2481. 
  10. T. Neidhart et al (1995). "Potential sputtering of lithium fluoride by slow multicharged ions". Physical Review Letters 74: 5280. doi:10.1103/PhysRevLett.74.5280. PMID 10058728, 
  11. M. Sporn et al (1997). "Potential Sputtering of Clean SiO2 by Slow Highly Charged Ions". Physical Review Letters 79: 945. doi:10.1103/PhysRevLett.79.945. 
  12. F. Aumayr and HP. Winter (2004). "Potential sputtering". Philosophical Transactions of the Royal Society London A 362: 77–102. doi:10.1098/rsta.2003.1300. 
  13. G. Hayderer et al (1999). "Threshold for Potential Sputtering of LiF". Physical Review Letters 83: 3948. doi:10.1103/PhysRevLett.83.3948. 
  14. T. A. Schoolcraft and B. J. Garrison, Journal of the American Chemical Society (1991). "Initial stages of etching of the silicon Si110 2x1 surface by 3.0-eV normal incident fluorine atoms: a molecular dynamics study". Journal of the American Chemical Society 113: 8221. doi:10.1021/ja00022a005. 
  15. J. Küppers (1995). "The hydrogen surface chemistry of carbon as a plasma facing material". Surface Science Reports 22: 249. doi:10.1016/0167-5729(96)80002-1. 
  16. E. Salonen et al (2001). "Swift chemical sputtering of amorphous hydrogenated carbon". Physical Review B 63: 195415. doi:10.1103/PhysRevB.63.195415, 
  17. H. R. Kaufman, J. J. Cuomo and J. M. E. Harper (1982). "Technology and applications of broad-beam ion sources used in sputtering. Part I. Ion source technology". J. Vac. Sci. Techn 21: 725–736. doi:10.1116/1.571819, (The original paper on Kaufman sputter sources.)