"Glacial" and "Glaciation" redirect here. For the geological periods, see glacial period. For the story by Alastair Reynolds, see Glacial (short story).
File:Baltoro glacier from air.jpg
File:Perito Moreno Glacier Patagonia Argentina Luca Galuzzi 2005.JPG
File:Grosser Aletschgletscher 3178.JPG
File:Icebergs cape york 1.JPG

A glacier is a large, slow-moving mass of ice, formed from compacted layers of snow, that slowly deforms and flows in response to gravity and high pressure. The word glacier comes from French via the Vulgar Latin glacia, and ultimately from Latin glacies meaning ice.[1]

Glacier ice is the largest reservoir of fresh water on Earth, and second only to oceans as the largest reservoir of total water. Glaciers cover vast areas of polar regions, are found in mountain ranges of every continent, and are restricted to the highest mountains in the tropics. The processes and landforms caused by glaciers and related to them are referred to as glacial. The process of glacier growth and establishment is called glaciation. Glaciers are sensitive monitors of climate conditions and are crucial to both world water resources and sea level variation.

Types of glaciersEdit

Main article: Glacier morphology
File:Glacier mouth.jpg
There are two main types of glaciers: alpine glaciers, which are found in mountain terrains, and continental glaciers-ice sheets, which can cover larger areas. Most of the concepts in this article apply equally to alpine glaciers and continental glaciers. Glaciers are also categorized by thermal characteristics, climate setting, and behavior.

The largest glaciers are continental glaciers, enormous masses of ice that are not visibly affected by the landscape and that cover the entire surface beneath them, except possibly on the margins where they are thinnest. Antarctica and Greenland are the only places where continental ice sheets currently exist. These regions contain vast quantities of fresh water. The volume of ice is so large that if the Greenland ice sheet melted, it would cause sea levels to rise some six meters (20 ft) all around the world. If the Antarctic ice sheet melted, sea levels would rise up to 65 meters (210 ft). These ice sheets are further divided into sections based on characteristics. Ice shelves are areas of an ice sheet that are at the margin and are afloat. As a result they are thinner, have limited slopes and reduced velocities. Ice streams are fast moving sections of an ice sheet.[2]

The smallest, alpine glaciers form high on the mountain slopes and are niche, slope or cirque glaciers. As a mountain glacier increases in size it can begin to flow down valley, and are referred to as valley glaciers. Larger glaciers can cover an entire mountain, mountain chain or even a volcano; this type is known as an ice cap or ice field, such as the Juneau icefield [1]. Ice caps feed outlet glaciers, tongues of ice that extend into valleys below, far from the margins of those larger ice masses. Outlet glaciers are formed by the movement of ice from an ice cap, or an ice cap from mountainous regions.

Tidewater glaciers are glaciers that flow into the sea. As the ice reaches the sea pieces break off, or calve, forming icebergs. Most tidewater glaciers calve above sea level, which often results in a tremendous splash as the iceberg strikes the water. If the water is deep, glaciers can calve underwater, causing the iceberg to suddenly explode up out of the water. The Hubbard Glacier is the longest tidewater glacier in Alaska and has a calving face over ten kilometers long. Yakutat Bay and Glacier Bay are both popular with cruise ship passengers because of the huge glaciers descending hundreds of feet to the water. This glacier type undergoes centuries-long cycles of advance and retreat that are much less affected by the climate changes currently causing the retreat of most other glaciers. Most tidewater glaciers are outlet glaciers of ice caps and ice fields.


File:ByrdGlacier HiLoContrast.jpg
File:Glacial ice formation LMB.png

Glaciers form where snow and ice accumulation exceed snow and ice melt. As the snow and ice thicken it will reach a point where it begins to move due to a combination of the slope the snow is lying on and the pressure of the overlying snow and ice. On steeper slopes this can occur with as little as 50 feet of snow-ice. The snow which forms temperate glaciers is subject to repeated freezing and thawing, which changes it into a form of granular ice called firn. Under the pressure of the layers of ice and snow above it, this granular ice fuses into denser and denser firn. Over a period of years, layers of firn undergo further compaction and become glacial ice. Glacier ice has a slightly reduced density from ice formed from the direct freezing of water. The air between snowflakes becomes trapped and becomes air bubble between the ice crystals.

The distinctive blue tint of glacial ice is often wrongly attributed to Rayleigh scattering due to bubbles in the ice. The blue color is actually created for the same reason that water is blue, that is, its slight absorption of red light due to an overtone of the infrared OH stretching mode of the water molecule.[3]


On the opposite end of the glacier, at its foot or terminal, is the deposition or ablation zone, where more ice is lost through melting than gained from snowfall and sediment is deposited. The place where the glacier thins to nothing is called the ice front. In terms of thermal characteristics a temperate glacier is at melting point throughout the year, from its surface to its base. The ice of a polar glaciers is always below freezing point from the surface to its base,though the surface snowpack may seasonally experience melting. Sub-polar glaciers have both temperate and polar ice, depending on the depth beneath the surface and position along the length of the glacier.

Glaciers are broken into zones as well based on surface snowpack and melt conditions [Benson, C.S., 1961, Stratigraphic studies in the snow and firn of the Greenland Ice Sheet, Res. Rep. 70, U.S. Army Snow, Ice and Permafrost Res Establ., Corps of Eng., 120 pp]. The ablation zone is the region where all of the snow has melted away and bare glacier ice is exposed. The equilibrium line separates the ablation zone and the accumulation zone. At this altitude, the amount of new snow gained by accumulation is equal to the amount of ice lost through ablation. The accumulation zone is a region where snowpack or superimposed ice accumulation persists. A further zonation of the accumulation zone distinguishes the melt conditions that exist. The dry snow zone is a region where no melt occurs, even in the summer and the snowpack remains dry. The percolation zone is an area with some surface melt, and meltwater percolating into the snowpack, often this zone is marked by refrozen ice lenses, glands, and layers. In this zone the snowpack does not reach the melting point throughout. Near the equilibrium line on some glaciers this leads to development of a superimposed ice zone is a zone where meltwater refreezes as a cold layer in the glacier forming a continuous mass of ice. The wet snow zone is the region where all of the snow deposited since the end of the previous summer has been raised to 0°C.The upper part of a glacier that receives most of the snowfall is called the accumulation zone. In general, the accumulation zone accounts for 60-70% of the glacier's surface area. The depth of ice in the accumulation zone exerts a downward force sufficient to cause deep erosion of the rock in this area. After the glacier is gone, this often leaves a bowl or amphitheater-shaped isostatic depression called a cirque.

The "health" of a glacier is usually assessed by determining the glacier mass balance or observing terminus behavior. Healthy glaciers have large accumulation zones, more than 60% of their area snowcovered at the end of the melt season.

In the aftermath of the Little Ice Age, around 1850, the glaciers of the Earth have retreated substantially through the 1940s. Glacier retreat . A slight cooling led to the advance of many alpine glaciers from 1950-1985. However, since 1985 glacier retreat and mass balance loss has become increasingly ubiquitous and large.[4][5][6]


File:Glacier au dessus de Saas-Fee.jpg
Main article: Ice sheet dynamics

Glaciers have a tendency to move, or "flow", downhill. While the bulk of a glacier flows in the direction of lower elevation, every point of the glacier can move at a different rate, and in a different direction. The general motion is due to the force of gravity, and the rate of flow at each point on the glacier is affected by many factors.

Ice behaves like an easily breaking solid until its thickness exceeds about 50 meters (160 ft). The pressure on ice deeper than that depth causes plastic flow. The glacial ice is made up of layers of molecules stacked on top of each other, with relatively weak bonds between the layers. When the stress of the layer above exceeds the inter-layer binding strength, it moves faster than the layer below.

Another type of movement is basal sliding. In this process, the whole glacier moves over the terrain on which it sits, lubricated by meltwater. As the pressure increases toward the base of the glacier, the melting point of water decreases, and the ice melts. Friction between ice and rock and geothermal heat from the Earth's interior also contribute to thawing. This type of movement is dominant in temperate glaciers. The geothermal heat flux becomes more important the thicker a glacier becomes.[7]

Fracture zone and cracks Edit

File:Holiday 2007 106.jpg

The top 50 meters of the glacier are more rigid, as the pressure is less. In this section, known as the fracture zone, the ice mostly moves as a single unit. Ice in the fracture zone moves over the top of the lower section. When the glacier moves through irregular terrain, cracks form in the fracture zone. These cracks can be up to 50 meters deep, at which point they meet the plastic-like flow underneath that seals them.The lower layers of glacial ice flow and deform plastically under the pressure, allowing the glacier as a whole to move slowly like a viscous fluid. Glaciers flow downslope, usually this reflects the slope of their base, but it may reflect the surface slope instead. Thus, a glacier can flow rises in terrain at their base. The upper layers of glaciers are more brittle, and often form deep cracks known as crevasses. the presence of crevasses is a sure sign of a glacier. Moving ice-snow of a glacier is often separated from a mountain side or snow-ice that is stationary and clinging to that mountain side by a bergshrund. This looks like a crevasse but is at the margin of the glacier and is a singular feature.

Crevasses form due to differences in glacier velocity . As the parts move at different speeds and directions, shear forces cause the two sections to break apart opening the crack of a crevasse all along the disconnecting faces. Projected in effect over three dimensions, one may settle and tip, the other upthrust or twist, or all such combinations due to the effects of each floating on the plastic layers below and any contact with rock and such. Hence the distance between the two separated parts while touching and rubbing deep down, frequently widens significantly towards the surface layers, many times creating a wide chasm. Crevasses seldom are more than 150 feet deep. Beneath this point the plastic deformation of the ice under pressure is to great for the differential motion to generate cracks. Crevasses can be transverse flow, as a glacier accelerates where the slope steepens, or they can be longitudinal parallel to flow where the central part of the glacier is moving faster than the marginal portion.

These crevasses make travel over glaciers hazardous. Subsequent heavy snow may form a fragile snow bridge, increasing the danger by hiding their presence at the surface. Below the equilibrium line glacier meltwater is concentrated in stream channels. The meltwater can pool in a proglacial lake, a lake on top of the glacier, or can descend into the depths of the glacier via amoulins). Then within or beneath the glacier the stream will flow in an englacial tunnel. Sometimes these tunnels reemerge at the surface of the glacier.


The speed of glacial displacement is partly determined by friction. Friction makes the ice at the bottom of the glacier move more slowly than the upper portion. In alpine glaciers, friction is also generated at the valley's side walls, which slows the edges relative to the center. This was confirmed by experiments in the 19th century, in which stakes were planted in a line across an alpine glacier, and as time passed, those in the center moved farther.

Mean speeds vary from stagnant areas with no motion where trees can establish themselves on surface sediment deposits such as in Alaska. In other cases they can move as fast as 20-30 meters per day, as in the case of Greenlands's Jakobshavn Glacier, or 2-3 m per day on Byrd Glacier the largest glacier in the world in Antarctica. Velocity increases with increasing slope, increasing thickness, increasing snowfall, increasing longitudinal confinement, increasing basal temperature, increasing meltwater production, reduced bed hardness and

A few glaciers have periods of very rapid advancement called surges. These glaciers exhibit normal movement until suddenly they accelerate, then return to their previous state. During these surges, the glacier may reach velocities far greater than normal speed.[8] These surges may be caused by failure of the underlying bedrock, the ponding of meltwater at the base of the glacier[9] — perhaps delivered from a supraglacial lake — or the simple accumulation of mass beyond a critical "tipping point".[10]


Ogives are alternating dark and light bands of ice occurring as ridges and valleys on glacier surfaces. They only occur below icefalls but not all icefalls have ogives below them. Once formed, they bend progressively downglacier due to the increased velocity toward the glacier's centerline. Ogives are likely linked to seasonal motion of the glacier as the width of one dark and one light band generally equals the annual movement of the glacier. The ridges and valleys are formed because ice from an icefall is severely broken up thereby increasing ablation surface area during the summertime creating a swale and creating space for snow accumulation in the winter creating a ridge.[11] Sometimes ogives are described as either wave ogives or band ogives in which they are solely undulations or varying color bands respectively.[12]


Template:DetailsTemplate:Details Glaciers occur on every continent and in approximately 47 of the world's countries. Extensive glaciers are found in Antarctica, Patagonia, Canada, Alaska,Greenland and Iceland. Mountain glaciers are widespread e.g. in the Andes, the Himalaya, the Rocky Mountains, the Caucasus, and the Alps. On mainland Australia no glaciers exist today, although a small glacier on Mount Kosciuszko was present in the last glacial period, and Tasmania was widely glaciated.[13] On New Zealand's South Island the West Coast bears the Fox and Franz Josef Glaciers. In New Guinea small glaciers are located on its highest summit massif of Puncak Jaya. Africa has glaciers on Mount Kilimanjaro in Tanzania, on Mount Kenya and in the Ruwenzori Range.[14]

Permanent snow cover is affected by factors such as the degree of slope on the land, amount of snowfall and the force and nature of the winds. As temperature decreases with altitude, high mountains — even those near the Equator — have permanent snow cover on their upper portions, above the snow line. Examples include Mount Kilimanjaro and the Tropical Andes in South America; however, the only snow to occur exactly on the Equator is at 4,690 m (15,387 ft) on the southern slope of Volcán Cayambe in Ecuador.

Conversely, areas of the Arctic such as Banks Island and Antarctic, Dry Valleys are arid and receive little snowfall despite the bitter cold. Cold air, unlike warm air, is unable to transport much water vapor. In Antarctica, the snow does not melt even at sea level. In addition to the dry, unglaciated regions of the Arctic, there are some mountains and volcanoes in Bolivia, Chile and Argentina that are high (4,500 metres (14,800 ft) - 6,900 m (22,600 ft)) and cold, but the relative lack of precipitation prevents snow from accumulating into glaciers. This is because these peaks are located near or in the hyperarid Atacama desert.

Glaciers on MarsEdit

File:Mars north pole.jpg

Elsewhere in the solar system, the vast polar ice caps of Mars rival those of the Earth and show glacial features. Especially the south polar cap is compared to glaciers on Earth.[15] Other glacial features on Mars are glacial debris aprons and the lineated valley fills of the fretted terrain in northern Arabia Terra.[16] Topographical features and computer models indicate the existence of more glaciers in Mars' past.[17]

Glacial Geology Edit

Rocks and sediments are added to glaciers through various processes. Glaciers erode the terrain principally through two methods: abrasion and plucking.

File:Arranque glaciar-en.svg

As the glacier flows over the bedrock's fractured surface, it softens and lifts blocks of rock that are brought into the ice. This process is known as plucking, and it is produced when subglacial water penetrates the fractures and the subsequent freezing expansion separates them from the bedrock. When the ice expands, it acts as a lever that loosens the rock by lifting it. This way, sediments of all sizes become part of the glacier's load. The rocks frozen into the bottom of the ice then act like grit in sandpaper.

Abrasion occurs when the ice and the load of rock fragments slide over the bedrock and function as sandpaper that smoothes and polishes the surface situated below. This pulverized rock is called rock flour. This flour is formed by rock grains of a size between 0.002 and 0.00625 mm. Sometimes the amount of rock flour produced is so high that currents of meltwaters acquire a grayish color. These processes of erosion lead to steeper valley walls and mountains slopes in alpine settings, which then can cause avalanching and rock slides which further add material to the glacier.

A visible characteristics of glacial abrasion are glacial striations. These are produced when the bottom's ice contains large chunks of rock that mark scratches in the bedrock. By mapping the direction of the flutes the direction of the glacier's movement can be determined. Chatter marks are seen as lines of roughly crescent shape depressions in the rock underlying a glacier caused by the abrasion where a boulder in the ice catches and is then released repetitively as the glacier drags it over the underlying basal rock.

The rate of glacier erosion is variable. The differential erosion undertaken by the ice is controlled by six important factors:

  • Velocity of glacial movement
  • Thickness of the ice
  • Shape, abundance and hardness of rock fragments contained in the ice at the bottom of the glacier
  • Relative ease of erosion of the surface under the glacier.
  • Thermal conditions at the glacier base.
  • Permeability and water pressure at the glacier base.

Material that becomes incorporated in a glacier are typically carried as far as the zone of ablation before being deposited. Glacial deposits are of two distinct types:

  • Glacial till: material directly deposited from glacial ice. Till includes a mixture of undifferentiated material ranging from clay size to boulders, the usual composition of a moraine.
  • Fluvial and outwash: sediments deposited by water. These deposits are stratified through various processes, such as boulders being separated from finer particles.

The larger pieces of rock which are encrusted in till or deposited on the surface are called glacial erratics. They may range in size from pebbles to boulders, but as they may be moved great distances they may be of drastically different type than the material upon which they are found. Patterns of glacial erratics provide clues of past glacial motions.


Glacial moraines are formed by the deposition of material from a glacier and are exposed after the glacier has retreated. These features usually appear as linear mounds of till, a non-sorted mixture of rock, gravel and boulders within a matrix of a fine powdery material. Terminal or end moraines are formed at the foot or terminal end of a glacier. Lateral moraines are formed on the sides of the glacier. Medial moraines are formed when two different glaciers, flowing in the same direction, coalesce and the lateral moraines of each combine to form a moraine in the middle of the merged glacier. Less apparent is the ground moraine, also called glacial drift, which often blankets the surface underneath much of the glacier downslope from the equilibrium line. Glacial meltwaters contain rock flour, an extremely fine powder ground from the underlying rock by the glacier's movement. Other features formed by glacial deposition include long snake-like ridges formed by streambeds under glaciers, known as eskers, and distinctive streamlined hills, known as drumlins.

Stoss-and-lee erosional features are formed by glaciers and show the direction of their movement. Long linear rock scratches (that follow the glacier's direction of movement) are called glacial striations, and divots in the rock are called chatter marks. Both of these features are left on the surfaces of stationary rock that were once under a glacier and were formed when loose rocks and boulders in the ice were transported over the rock surface. Transport of fine-grained material within a glacier can smooth or polish the surface of rocks, leading to glacial polish. Glacial erratics are rounded boulders that were left by a melting glacier and are often seen perched precariously on exposed rock faces after glacial retreat.

The term moraine is of French origin, and it was coined by peasants to describe alluvial embankments and rims found near the margins of glaciers in the French Alps. In modern geology, the term is used more broadly, and is applied to a series of formations, all of which are composed of till.

Drumlins Edit

File:Drumlins LMB.svg

Drumlins are asymmetrical, canoe shaped hills with aerodynamic profiles made mainly of till. Their heights vary from 15 to 50 meters and they can reach a kilometer in length. The tilted side of the hill looks toward the direction from which the ice advanced (stoss), while the longer slope follows the ice's direction of movement (lee).

Drumlins are found in groups called drumlin fields or drumlin camps. An example of these fields is found east of Rochester, New York, and it is estimated that it contains about 10,000 drumlins.

Although the process that forms drumlins is not fully understood, it can be inferred from their shape that they are products of the plastic deformation zone of ancient glaciers. It is believed that many drumlins were formed when glaciers advanced over and altered the deposits of earlier glaciers.

Glacial valleysEdit

File:Stillaguamish River 18434.JPG
File:Glacial lakes, Bhutan.jpg

Before glaciation, mountain valleys have a characteristic "V" shape, produced by downward erosion by water. However, during glaciation, these valleys widen and deepen, forming a "U"-shaped glacial valley. Besides the deepening and widening of the valley, the glacier also smooths the valley due to erosion. In this way, it eliminates the spurs of earth that extend across the valley. Because of this interaction, triangular cliffs called truncated spurs are formed.

Many glaciers deepen their valleys more than their smaller tributaries. Therefore, when the glaciers recede from the region, the valleys of the tributary glaciers remain above the main glacier's depression, and these are called hanging valleys.

In parts of the soil that were affected by abrasion and plucking, the depressions left can be filled by lakes, called paternoster lakes.

At the 'start' of a classic valley glacier is the cirque, which has a bowl shape with escarped walls on three sides, but open on the side that descends into the valley. In the cirque, an accumulation of ice is formed. These begin as irregularities on the side of the mountain, which are later augmented in size by the coining of the ice. Once the glacier melts, these corries are usually occupied by small mountain lakes called tarns.

There may be two glacial cirques 'back to back' which erode deep into their backwalls until only a narrow ridge, called an arête is left. This structure may result in a mountain pass.

Glaciers are also responsible for the creation of fjords (deep coves or inlets) and escarpments that are found at high latitudes.

File:Glacial landscape.svg

Arêtes and horns (pyramid peak) Edit

An arête is a narrow crest with a sharp edge. The meeting of three or more arêtes creates pointed pyramidal peaks and in extremely steep-sided forms these are called horns.

Both features may have the same process behind their formation: the enlargement of cirques from glacial plucking and the action of the ice. Horns are formed by cirques that encircle a single mountain.

Arêtes emerge in a similar manner; the only difference is that the cirques are not located in a circle, but rather on opposite sides along a divide. Arêtes can also be produced by the collision of two parallel glaciers. In this case, the glacial tongues cut the divides down to size through erosion, and polish the adjacent valleys.

Roche moutonnéeEdit

Some rock formations in the path of a glacier are sculpted into small hills with a shape known as roche moutonnée or sheepback rock. An elongated, rounded, asymmetrical, bedrock knob can be produced by glacier erosion. It has a gentle slope on its up-glacier side and a steep to vertical face on the down-glacier side. The glacier abrades the smooth slope that it flows along, while rock is torn loose from the downstream side and carried away in ice, a process known as 'plucking'. Rock on this side is fractured by combinations of forces due to water, ice in rock cracks, and structural stresses.

Alluvial stratificationEdit

The water that rises from the ablation zone moves away from the glacier and carries with it fine eroded sediments. As the speed of the water decreases, so does its capacity to carry objects in suspension. The water then gradually deposits the sediment as it runs, creating an alluvial plain. When this phenomenon occurs in a valley, it is called a valley train. When the deposition is to an estuary, the sediments are known as "bay mud".

File:Receding glacier-en.svg

Outwash plains and valley trains are usually accompanied by basins known as kettles. Glacial depressions are also produced in till deposits. These depressions are formed when large ice blocks are stuck in the glacial alluvium and after melting, they leave holes in the sediment.

Generally, the diameter of these depressions does not exceed 2 km, except in Minnesota, where some depressions reach up to 50 km in diameter, with depths varying between 10 and 50 meters.

See also: Error: Template must be given at least one article name

Deposits in contact with iceEdit

When a glacier reduces in size to a critical point, its flow stops, and the ice becomes stationary. Meanwhile, meltwater flows over, within, and beneath the ice leave stratified alluvial deposits. Because of this, as the ice melts, it leaves stratified deposits in the form of columns, terraces and clusters. These types of deposits are known as deposits in contact with ice.

When those deposits take the form of columns of tipped sides or mounds, which are called kames. Some kames form when meltwater deposits sediments through openings in the interior of the ice. In other cases, they are just the result of fans or deltas towards the exterior of the ice produced by meltwater.

When the glacial ice occupies a valley it can form terraces or kame along the sides of the valley.

A third type of deposit formed in contact with the ice is characterized by long, narrow sinuous crests composed fundamentally of sand and gravel deposited by streams of meltwater flowing within, or beneath the glacier. After the ice has melted these linear ridges or eskers remain as landscape features. Some of these crests have heights exceeding 100 meters and their lengths surpass 100 km.

Loess depositsEdit

Very fine glacial sediments or rock flour is often picked up by wind blowing over the bare surface and may be deposited great distances from the original fluvial deposition site. These eolian loess deposits may be very deep, even hundreds of meters, as in areas of China and the Midwestern United States. Katabatic winds can be important in this process.

Transportation Edit

  • Entrainment is the picking up of loose material by the glacier from along the bed and valley sides. Entrainment can happen by regelation or by the ice simply picking up the debris.
  • Basal Ice Freezing is thought to be to be made by glaciohydraulic supercooling, though some studies show that even where physical conditions allow it to occur, the process may not be responsible for observed sequences of basal ice.
  • Plucking is the process involves the glacier freezing onto the valley sides and subsequent ice movement pulling away masses of rock. As the bedrock is greater in strength than the glacier, only previously loosened material can be removed. It can be loosened by local pressure and temperature, water and pressure release of the rock itself.
  • Supraglacial debris is carried on the surface of the glacier as lateral and medial moraines. In summer ablation, surface melt water carries a small load and this often disappears down crevasses.
  • Englacial debris is moraine carried within the body of the glacier.
  • Subglacial debris is moved along the floor of the valley either by the ice as ground moraine or by meltwater streams formed by pressure melting.

Deposition Edit

  • Lodgement till is identical to ground moraine. It is material that is smeared on to the valley floor when its weight becomes too great to be moved by the glacier.
  • Ablation till is a combination of englacial and supraglacial moraine It is released as a stationary glacier begins to melt and material is dropped in situ.
  • Dumping is when a glacier moves material to its outermost or lowermost end and dumps it.
  • Deformation flow is the change of shape of the rock and land due to the glacier.

Isostatic reboundEdit

Main article: Isostatic rebound
File:Glacier weight effects LMB.png

This rise of a part of the crust is due to an isostatic adjustment. A large mass, such as an ice sheet/glacier, depresses the crust of the Earth and displaces the mantle below. The depression is about a third the thickness of the ice sheet. After the glacier melts the mantle begins to flow back to its original position pushing the crust back to its original position. This post-glacial rebound, which lags melting of the ice sheet/glacier, is currently occurring in measurable amounts in Scandinavia and the Great Lakes region of North America.

An interesting geomorphological feature created by the same process, but on a smaller scale, is known as dilation-faulting. It occurs within rock where previously compressed rock is allowed to return to its original shape, but more rapidly than can be maintained without faulting, leading to an effect similar to that which would be seen if the rock were hit by a large hammer. This can be observed in recently de-glaciated parts of Iceland.

See also Edit

Cited referencesEdit

  1. Simpson, D.P. (1979). Cassell's Latin Dictionary (5 ed.). London: Cassell Ltd.. pp. 883. ISBN 0-304-52257-0. 
  2. Bindschadler, R.A. and T.A. Scambos. Satellite-image-derived velocity field of an Antarctic ice stream. Science, 252(5003), 242-246, 1991
  3. What causes the blue color that sometimes appears in snow and ice?
  5. Frank Paul, et. al., 2004, Rapid disintegration of Alpine glaciers observed with satellite data, GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L21402, doi:10.1029/2004GL020816, 2004
  6. Recent Global Glacier Retreat Overview
  7. Hughes, T. West Antarctic ice streams. Reviews of Geophysics and Space Physics, 15(1), 1-46, 1977
  8. T. Strozzi et al.: The Evolution of a Glacier Surge Observed with the ERS Satellites (pdf, 1.3 Mb)
  9. The Brúarjökull Project: Sedimentary environments of a surging glacier. The Brúarjökull Project research idea.
  10. Meier & Post (1969)
  11. Easterbrook, D.J. (1999). Surface Processes and Landforms (2 ed.). New Jersey: Prentice-Hall, Inc.. pp. 546. ISBN 0-13-860958-6. 
  12. Glossary of Glacier Terminology
  13. C.D. Ollier: Australian Landforms and their History, National Mapping Fab, Geoscience Australia
  14. List of Countries with glaciers
  15. Kargel, J.S. et al.:Martian Polar Ice Sheets and Mid-Latitude Debris-Rich Glaciers, and Terrestrial Analogs, Third International Conference on Mars Polar Science and Exploration, Alberta, Canada, October 13-17, 2003 (pdf 970 Kb)
  16. Fretted Terrain: Lineated Valley Fill, Mars Global Surveyor Mars Orbiter Camera, Malin Space Science Systems/NASA
  17. Martian glaciers: did they originate from the atmosphere?, ESA Mars Express, 20 January 2006

Uncited references Edit


  • Hambrey, Michael; Alean, Jürg (2004). Glaciers (2nd ed. ed.), Cambridge University Press. ISBN 0-521-82808-2. OCLC 54371738.  An excellent less-technical treatment of all aspects, with superb photographs and firsthand accounts of glaciologists' experiences. All images of this book can be found online (see Weblinks: Glaciers-online)
  • Benn, Douglas I. (1999). Glaciers and Glaciation, Arnold. ISBN 0470236515. OCLC 38329570. 
  • Bennett, M. R.; Glasser, N. F. (1996). Glacial Geology: Ice Sheets and Landforms, John Wiley & Sons. ISBN 0471963445. OCLC 33359888 37536152. 
  • Hambrey, Michael (1994). Glacial Environments, University of British Columbia Press, UCL Press. ISBN 0774805102. OCLC 30512475.  An undergraduate-level textbook.
  • Knight, Peter G (1999). Glaciers. Cheltenham: Nelson Thornes. ISBN 0-7487-4000-7. OCLC 42656957 63064183 77294832.  A textbook for undergraduates avoiding mathematical complexities
  • Walley, Robert (1992). Introduction to Physical Geography, Wm. C. Brown Publishers.  A textbook devoted to explaining the geography of our planet.
  • W. S. B. Paterson (1994). Physics of Glaciers (3rd ed. ed.), Pergamon Press. ISBN 0080139728. OCLC 26188.  A comprehensive reference on the physical principles underlying formation and behavior.

External links Edit

Commons mediaEdit