FANDOM


Energy conservation is the practice of decreasing the quantity of energy used. It may be achieved through efficient energy use, in which case energy use is decreased while achieving a similar outcome, or by reduced consumption of energy services. Energy conservation may result in increase of financial capital, environmental value, national security, personal security, and human comfort. Individuals and organizations that are direct consumers of energy may want to conserve energy in order to reduce energy costs and promote economic security. Industrial and commercial users may want to increase efficiency and thus maximize profit.

Introduction Edit

Electrical energy conservation is an important element of energy policy. Energy conservation reduces the energy consumption and energy demand per capita, and thus offsets the growth in energy supply needed to keep up with population growth. This reduces the rise in energy costs, and can reduce the need for new power plants, and energy imports. The reduced energy demand can provide more flexibility in choosing the most preferred methods of energy production.

By reducing emissions, energy conservation is an important part of lessening climate change. Energy conservation facilitates the replacement of non-renewable resources with renewable energy. Energy conservation is often the most economical solution to energy shortages, and is a more environmentally benign alternative to increased energy production.

By country Edit

United StatesEdit

The United States is currently the largest single consumer of energy. The U.S. Department of Energy categorizes national energy use in four broad sectors: transportation, residential, commercial, and industrial.[1]

File:USEnFlow02-quads.gif
File:USenergy2004.jpg

Energy usage in transportation and residential sectors (about half of U.S. energy consumption) is largely controlled by individual domestic consumers. Commercial and industrial energy expenditures are determined by businesses entities and other facility managers. National energy policy has a significant effect on energy usage across all four sectors.

TransportationEdit

The transportation includes all vehicles used for personal or freight transportation. Of the energy used in this sector, approximately 65% is consumed by gasoline-powered vehicles, primarily personally owned. Diesel-powered transport (trains, merchant ships, heavy trucks, etc.) consumes about 20%, and air traffic consumes most of the remaining 15%.[2]

The two oil supply crisis of the 1970s spurred the creation, in 1975, of the federal Corporate Average Fuel Economy (CAFE) program, which required auto manufacturers to meet progressively higher fleet fuel economy targets. The next decade saw dramatic improvements in fuel economy, mostly the result of reductions in vehicle size and weight which originated in the late 1970s, along with the transition to front wheel drive. These gains eroded somewhat after 1990 due to the growing popularity of sport utility vehicles, pickup trucks and minivans, which fall under the more lenient "light truck" CAFE standard.

In addition to the CAFE program, the U.S. government has tried to encourage better vehicle efficiency through tax policy. Since 2002, taxpayers have been eligible for income tax credits for gas/electric hybrid vehicles. A "gas-guzzler" tax has been assessed on manufacturers since 1978 for cars with exceptionally poor fuel economy. While this tax remains in effect, it currently generates very little revenue as overall fuel economy has improved. The gas-guzzler tax ended the reign of large cubic-inched engines from the musclecar era.

Another focus in gasoline conservation is reducing the number of miles driven. An estimated 40% of American automobile use is associated with daily commuting. Many urban areas offer subsidized public transportation to reduce commuting traffic, and encourage carpooling by providing designated high-occupancy vehicle lanes and lower tolls for cars with multiple riders. In recent years telecommuting has also become a viable alternative to commuting for some jobs, but in 2003 only 3.5% of workers were telecommuters. Ironically, hundreds of thousands of American and European workers have been replaced by workers in Asia who telecommute from thousands of miles away.

Fuel economy-maximizing behaviors also help reduce fuel consumption. Among the most effective are moderate (as opposed to aggressive) driving, driving at lower speeds, using cruise control, and turning off a vehicle's engine at stops rather than idling. A vehicle's gas mileage decreases rapidly highway speeds, normally above 55 miles per hour (though the exact number varies by vehicle). This is because aerodynamic forces are proportionally related to the square of an object's speed (when the speed is doubled, drag quadruples). According to the U.S. Department of Energy (DOE), as a rule of thumb, each Template:Convert/mi/h you drive over Template:Convert/mi/h is similar to paying an additional $0.30 per gallon for gas [3] The exact speed at which a vehicle achieves it's highest efficiency varies based on the vehicle's drag coefficient, frontal area, surrounding air speed, and the efficiency and gearing of a vehicle's drive train and transmission.

Residential sectorEdit

The residential sector refers to all private residences, including single-family homes, apartments, manufactured homes and dormitories. Energy use in this sector varies significantly across the country, due to regional climate differences and different regulation. On average, about half of the energy used in U.S. homes is expended on space conditioning (i.e. heating and cooling).

The efficiency of furnaces and air conditioners has increased steadily since the energy crises of the 1970s. The 1987 National Appliance Energy Conservation Act authorized the Department of Energy to set minimum efficiency standards for space conditioning equipment and other appliances each year, based on what is "technologically feasible and economically justified". Beyond these minimum standards, the Environmental Protection Agency awards the Energy Star designation to appliances that exceed industry efficiency averages by an EPA-specified percentage.

Despite technological improvements, many American lifestyle changes have put higher demands on heating and cooling resources. The average size of homes built in the United States has increased significantly, from Template:Convert/sqft in 1970 to Template:Convert/sqft in 2005. The single-person household has become more common, as has central air conditioning: 23% of households had central air conditioning in 1978, that figure rose to 55% by 2001.

As furnace efficiency gets higher, there is limited room for improvement--efficiencies above 85% are now common. However, improving the building envelope through better or more insulation, advanced windows, etc., can allow larger improvements. The passive house approach produces superinsulated buildings that approach zero net energy consumption. Improving the building envelope can also be cheaper than replacing a furnace or air conditioner.

Even lower cost improvements include weatherization, which is frequently subsidized by utilities or state/federal tax credits, as are programmable thermostats. Consumers have also been urged to adopt a wider indoor temperature range (e.g. 65 °F ( /</span> ) in the winter, 80 °F ( / ) in the summer).

One underutilized, but potentially very powerful means to reduce household energy consumption is to provide real-time feedback to homeowners so they can effectively alter their energy using behavior. Recently, low cost energy feedback displays, such as The Energy Detective or wattson [1], have become available. A study of a similar device deployed in 500 Ontario homes by Hydro One [2] showed an average 6.5% drop in total electricity use when compared with a similarly sized control group.

Standby power used by consumer electronics and appliances while they are turned off accounts for an estimated 5 to 10% of household electricity consumption, adding an estimated $3 billion to annual energy costs in the USA. "In the average home, 75% of the electricity used to power home electronics is consumed while the products are turned off." [3]

Home energy consumption averagesEdit

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.